Tuesday, November 21, 2006

50 Million Farmers....

Life Puzzle making is all about being proactive, self-responsible and finding solutions in the midst of a world that is swimming in the reactive, victim, status quo! The following article is such an inspiration because it is confronting issues that our current systems are refusing to deal with until they hit complete crisis levels. Issues like oil crisis, water crisis, social crisis, food/famine etc.

Now you may be reading this thinking....geez, not exactly what I wanted to read right now but I encourage you to stop everything you're doing and read it anyway! The beginning of this article is quite bleak, I'll agree, but by the time you get to the bottom, you'll see a hopeful future that could benefit us all.

I've posted the link....and I've pasted just the first portion of his presentation here on my blog--it will get you going but then take a moment, go to the link and finish it there. It will be worth your time and be one more encouragement to be a Life Puzzle maker!



Published on 17 Nov 2006 by Energy Bulletin. http://www.energybulletin.net/22584.html Archived on 17 Nov 2006.
Fifty Million Farmers
by Richard Heinberg (Note: This is the abbreviated text of a lecture by Richard Heinberg delivered to the E. F. Schumacher Society in Stockbridge, Massachusetts on October 28, 2006)

There was a time not so long ago when famine was an expected, if not accepted, part of life. Until the 19th century—whether in China, France, India or Britain—food came almost entirely from local sources and harvests were variable. In good years, there was plenty—enough for seasonal feasts and for storage in anticipation of winter and hard times to come; in bad years, starvation cut down the poorest and the weakest—the very young, the old, and the sickly. Sometimes bad years followed one upon another, reducing the size of the population by several percent. This was the normal condition of life in pre-industrial societies, and it persisted for thousands of years.

Today, in America, such a state of affairs is hard to imagine. Food is so cheap and plentiful that obesity is a far more widespread concern than hunger. The average mega-supermarket stocks an impressive array of exotic foods from across the globe, and even staples are typically trucked from hundreds of miles away. Many people in America did go hungry during the Great Depression, but those were times that only the elderly can recall. In the current regime, the desperately poor may experience chronic malnutrition and may miss meals, but for most the dilemma is finding time in the day’s hectic schedule to go to the grocery store or to cook. As a result, fast-food restaurants proliferate: the fare may not be particularly nutritious, but even an hour’s earnings at minimum wage will buy a meal or two.

The average American family spent 20 percent of its income on food in 1950; today the figure is 10 percent. This is an extraordinary situation; but because it is the only one that most Americans alive today have ever experienced, we tend to assume that it will continue indefinitely.

However there are reasons to think that our current anomalous abundance of inexpensive food may be only temporary; if so, present and future generations may become acquainted with that old, formerly familiar but unwelcome houseguest—famine. The following are four principal bases (there are others) for this gloomy forecast. The first has to with looming fuel shortages. This is a subject I have written about extensively elsewhere, so I shall not repeat myself in any detail. Suffice it to say that the era of cheap oil and natural gas is coming to a crashing end, with global oil production projected to peak in 2010 and North American natural gas extraction rates already in decline. These events will have enormous implications for America’s petroleum-dependent food system. Modern industrial agriculture has been described as a method of using soil to turn petroleum and gas into food. We use natural gas to make fertilizer, and oil to fuel farm machinery and power irrigation pumps, as a feedstock for pesticides and herbicides, in the maintenance of animal operations, in crop storage and drying, and for transportation of farm inputs and outputs.

Agriculture accounts for about 17 percent of the U.S. annual energy budget; this makes it the single largest consumer of petroleum products as compared to other industries. By comparison, the U.S. military, in all of its operations, uses only about half that amount. About 350 gallons (1,500 liters) of oil equivalents are required to feed each American each year, and every calorie of food produced requires, on average, ten calories of fossil-fuel inputs. This is a food system profoundly vulnerable, at every level, to fuel shortages and skyrocketing prices. And both are inevitable. An attempt to make up for fuel shortfalls by producing more biofuels—ethanol, butanol, and biodiesel—will put even more pressure on the food system, and will likely result in a competition between food and fuel uses of land and other resources needed for agricultural production. Already 14 percent of the U.S. corn crop is devoted to making ethanol, and that proportion is expected to rise to one quarter, based solely on existing projects-in-development and government mandates.

The second factor potentially leading to famine is a shortage of farmers. Much of the success of industrial agriculture lies in its labor efficiency: far less human work is required to produce a given amount of food today than was the case decades ago (the actual fraction, comparing the year 2000 with 1900, is about one seventh). But that very success implies a growing vulnerability. We don’t need as many farmers, as a percentage of the population, as we used to; so, throughout the past century, most farming families—including hundreds of thousands and perhaps millions that would have preferred to maintain their rural, self-sufficient way of life—were economically forced to move to cities and find jobs. Today so few people farm that vital knowledge of how to farm is disappearing. The average age of American farmers is over 55 and approaching 60. The proportion of principal farm operators younger than 35 has dropped from 15.9 percent in 1982 to 5.8 percent in 2002. Of all the dismal statistics I know, these are surely among the most frightening. Who will be growing our food twenty years from now? With less oil and gas available, we will need far more knowledge and muscle power devoted to food production, and thus far more people on the farm, than we have currently.

The third worrisome trend is an increasing scarcity of fresh water. Sixty percent of water used nationally goes toward agriculture. California’s Central Valley, which produces the substantial bulk of the nation’s fruits, nuts, and vegetables, receives virtually no rainfall during summer months and relies overwhelmingly on irrigation. But the snowpack on the Sierras, which provides much of that irrigation water, is declining, and the aquifer that supplies much of the rest is being drawn down at many times its recharge rate. If these trends continue, the Central Valley may be incapable of producing food in any substantial quantities within two or three decades. Other parts of the country are similarly overspending their water budgets, and very little is being done to deal with this looming catastrophe.

Fourth and finally, there is the problem of global climate change. Often the phrase used for this is “global warming,” which implies only the fact that the world’s average temperature will be increasing by a couple of degrees or more over the next few decades. The much greater problem for farmers is destabilization of weather patterns. We face not just a warmer climate, but climate chaos: droughts, floods, and stronger storms in general (hurricanes, cyclones, tornadoes, hail storms)—in short, unpredictable weather of all kinds. Farmers depend on relatively consistent seasonal patterns of rain and sun, cold and heat; a climate shift can spell the end of farmers’ ability to grow a crop in a given region, and even a single freak storm can destroy an entire year’s production. Given the fact that modern American agriculture has become highly centralized due to cheap transport and economies of scale (almost the entire national spinach crop, for example, comes from a single valley in California), the damage from that freak storm is today potentially continental or even global in scale. We have embarked on a century in which, increasingly, freakish weather is normal.

I am not pointing out these problems, and their likely consequences, in order to cause panic. As I propose below, there is a solution to at least two of these dilemmas, one that may also help us address the remaining ones. It is not a simple or easy strategy and it will require a coordinated and sustained national effort. But in addition to averting famine, this strategy may permit us to solve a host of other, seemingly unrelated social and environmental problems.